

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Mithaghar Road, Mulund East, Mumbai-400081, India

College with Potential for Excellence Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, email: vazecollege@gmail.com

Syllabus for F.Y.B.Sc. Programme Physics

Syllabus as per Choice Based Credit System (NEP-2020)

(June 2025 Onwards)

Submitted by

Department of Physics Vinayak Ganesh Vaze College of Arts, Science and Commerce (Autonomous) Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262 E-mail: <u>vazecollege@gmail.com</u>Website :<u>www.vazecollege.net</u>

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Syllabus as per Choice Based Credit System (NEP 2020) Syllabus for Approval

Subject: Physics

Sr. No.	Heading	Particulars
1	Title of Programme	First Year B.Sc. Physics: Semester I and II
2	Eligibility for Admission	H.S.C Passed
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.
4	Ordinances/Regulations (if any)	
5	No. of Years/Semesters	One year/ Two semester
6	Level	U.G. Part-I : Level- 4.5
7	Pattern	Semester
8	Status	Revised
9	To be implemented from Academic year	2025-2026

Date:

Signature:

BOS Chairperson:

The Framework of the Choice-Based Credit System [NEP-2020]

• Major Subject:

A single subject course of study pursued by a student as a mandatory requirement of the programme of study. Indian Knowledge System (IKS) to be included in the core courses.

• Elective Course:

An elective course could be a project designed to acquire skills to supplement the major study.

• Minor Subject:

A second subject of study pursued by a student as an additional requirement of the programme of study.

• OE: Open Elective

An elective course chosen generally from an unrelated discipline/subject, to seek multidisciplinary exposure.

• AEC: Ability Enhancement Course

Mandatory Courses on content related to Language, and Literature (i) Compulsory – English communication (ii) Elective – any Indian language other than English.

• IKS: Indian Knowledge System (Generic)

Mandatory course - an overview of the contribution of India towards multidisciplinary research and development.

• VSC: Vocational Skill Course

Courses aimed at imparting practical skills, hands-on training, and soft skills to increase the employability of students. Specific or supporting the major subject is to be chosen from a basket/pool offered by the college.

• SEC: Skill Enhancement Course

Courses aimed at imparting practical skills, hands-on training, and soft skills to increase students' employability. It could be chosen from a basket/pool offered by the college or a MOOC on Swayam or NPTEL platforms.

• On-Job Training (OJT)/Internship/Field Project (FP)/Community Engagement Programme (CEP)/Research Project (RP)

Application of knowledge/concepts in solving or analysing a real-life problem. All these are related to the major subject.

• CC: Co-curricular Course

For the holistic development of students through Cultural activities such as performing art, visual art, NCC, NSS, Yoga, etc.

• VEC: Value Education Course

Compulsory courses on

- (i) The Constitution of India
- (ii) Environmental Education

B. Sc. Program in Physics: Cumulative Credit Structure

	F.Y.B.Sc.														
Land	Sem	Mandatory				Minor		Any Faculty	VSC/SEC	Course /	bility Enhancement rse / Indian Knowledge tem/Value Education		OJT/FP/CEP/CC/RP	Credit	Cumulative Credit
Level	Sem		Major]	Elective			OE			Course				
		C-1	Practical	C-1	Practical	C-1	Practical	C-1		AEC	VEC	IKS			
4.5	Ι	2 [2L]	2 [2P]	-	-	2 [2L]	2 [2P]	4 [3L+1P]	VSC = 4 [2L + 2P]	2	2	2	-	22	44
	II	2 [2L]	2 [2P]	-	-	2 [2L]	2 [2P]	4 [3L+ 1P]	SEC = 4 [2L + 2P]	2	2	-	CC = 2	22	

	S.Y.B.Sc																
Laval	Level Sem	Mandatory							Minor	Any Faculty	VSC/SEC	Course /	ty Enhance Indian Kn /Value Edu	owledge	OJT/FP/CEP/CC/RP	Credit	Cumulative Credit
Level	Sem			Maj	or	F	Elective			OE		System	Course	cution			Creat
		C-1	C-2	C-3	Practical	C-1	Practical	C-1	Practical	C-1		AEC	AEC VEC				
5.0	III	2 [2L]	2 [2L]	2 [2L]	2 [2P]	-	-	2 [2L]	2 [2P]	2 [2L]	VSC = 2 [2P]	2	-	-	FP = 2, CC = 2	22	44
5.0	5.0 IV	2 [2L]	2 [2L]	2 [2L]	2 [2P]	-	-	2 [2L]	-	2 [2L]	SEC = 2 [2P]	2	-	-	CEP = 4, CC = 2	22	44

	T.Y.B.Sc.																	
		Mandatory						Any Faculty				y Enhance Indian Kn				Cumulative		
Level	Sem			Maj	jor		I	Elective		Minor	OE	VSC/SEC	Course / Indian Knowledge System/Value Education Course			OJT/FP/CEP/CC/RP	Credit	Credit
		C-1	C-2	C-3	C-4	Practical	C-1	Practical	C-1	Practical	C-1		AEC	VEC	IKS			
	v	2 [2L]	2 [2L]	2 [2L]	2 [2L]	2 [2P]	2 [2L]	2 [2P]	2 [2T]	2 [2P]	-	VSC = 2 [2P]	-	-	-	FP = 2	22	44
5.5	VI	2 [2L]	2 [2L]	2 [2L]	2 [2L]	2 [2P]	2 [2L]	2 [2P]	2 [2T]	-	-	VSC = 2 [2P]	-	-	-	OJT = 4	22	44

**L = Lecture , P = Practical

F.Y.B.Sc. Physics Program Structure and Course Scheme

Somoston	Majo	r	Minor	OE	VSC / SEC	AEC /VEC /IVS	OJT/FP/CEP/CC/RP	Total
Semester	Mandatory	Elective	MIIIOI	UL	VSC / SEC	AEC/VEC/IKS	UJI/FF/CEF/CC/KF	Credit
I	4 Credit [2L + 2P] (One Paper)	NA	4 Credit [2L + 2P] (One Paper)	4 Credit [3L + 1P] (One Paper)	VSC 4 Credit [2L + 2P] (One Paper)	AEC – 2 Credit VEC – 2 Credit IKS – 2 Credit (One Paper Each)	NA	22
II	4 Credit [2L + 2P] (One Paper)	NA	4 Credit [2L + 2P] (One Paper)	4 Credit [3L + 1P] (One Paper)	SEC 4 Credit [2L + 2P]	AEC – 2 Credit VEC – 2 Credit (One Paper Each)	CC – 2 Credit	22
Total	(One Faper) 8	-	8	8	(One Paper) 8	10	2	44

Programme Educational Objectives

PEO1	Graduates will have a strong foundation in Physics, allowing them to pursue higher
	education or careers in academia, industry, and research.
	cutation of careers in academia, industry, and research.
PEO2	Graduates will demonstrate proficiency in problem-solving, analytical thinking, and application of Physics concepts in real-world settings.
PEO3	Graduates will be ethical, socially responsible, and contribute to societal well-being
	through their professional endeavours.
PEO4	Graduates will demonstrate leadership, communication, and teamwork skills, working effectively in multidisciplinary environments.
PEO5	Graduates will engage in lifelong learning to keep up with advancements in Physics and related fields.
PEO6	Graduates will apply their knowledge of Physics in industries, research institutions, and government agencies, contributing to technological innovation.

Programme Outcomes

Upon successful completion of the B.Sc. (Physics) course from Vaze College affiliated to Mumbai University, graduates can expect the following outcomes:

P01	Scientific Knowledge
	Graduates will demonstrate a strong understanding of core principles of Physics and
	related disciplines, and will apply theoretical knowledge to solve complex problems in
	scientific contexts.
P02	Problem Analysis
	Graduates will be able to identify and analyse complex scientific problems, collect
	relevant data, and apply appropriate methods to find meaningful solutions.
P03	Experimental and Practical Application Skills
	Graduates will be able to apply theoretical knowledge to design and conduct practical
	experiments, analyse data, and derive conclusions. They will also connect experimental
	outcomes with theoretical concepts, even in papers that include practical components.
P04	Modern Tool Usage
	Graduates will be proficient in using modern computational and experimental tools
	and software to model, analyse, and solve problems in Physics.
P05	Communication
	Graduates will be able to communicate scientific concepts and experimental results
	effectively, both orally and in writing, to diverse audiences.
P06	Lifelong Learning and Societal Contribution
	Graduates will recognize the importance of lifelong learning and contribute to societal
	and environmental challenges through responsible application of scientific knowledge.

Programme Specific Outcomes

PSO1	Understand and apply fundamental concepts of classical mechanics and optics to explain natural phenomena.								
DCOO									
PSO2	Develop basic laboratory skills through experiments in mechanics, optics, and								
	electricity.								
PSO3	Gain introductory experience with numerical methods and their implementation using								
	Excel for physical problems.								
PSO4	Demonstrate understanding of basic electrical circuits and electronic components.								
PSO5	Correlate physics principles with daily life experiences to appreciate their relevance and societal impact.								

The Detailed Semester and Course Wise Syllabus as follows:

		SEMESTER I							
	Code	Course of Study	Cr.	L	Τ	Р			
Majar	VSPH100	Classical Mechanics and Optics	2	2	-	-			
Major -	VSPH101	Practical based on Classical Mechanics and Optics	2	-	-	4			
	VSPH102	Numerical Technique in Physics	2	2	-	-			
VSC	VSPH103	Microsoft Excel-Based Practical on Numerical Techniques in Physics	2	-	-	4			
Minor	VSPH104	Classical Mechanics and Optics	2	2	-	-			
MIIIOI	VSPH105	Practical based on Classical Mechanics and Optics	2	-	-	4			
OE	VSPH106	Physics in Everyday Life	3	3	-	-			
UE	VSFIIIOO	Practical based on Physics in Everyday Life	1	-	-	1			
AEC		From the Basket	2	2	-	-			
VES		From the Basket	2	2	-	-			
IKS		From the Basket	2	2	-	-			
CC		NA	-	-	-	-			
	Total 22 15 00 13								

		SEMESTER II				
	Code	Course of Study	Cr.	L	Τ	Р
Maion	VSPH150	Electricity and Electronics	2	2	-	-
Major –	VSPH151	Practical based on Electricity and Electronics	2	-	-	4
SEC	VSPH152	Modern Physics	2	2	-	-
SEC –	VSPH153	Practical based on Modern Physics	2	-	-	4
Minor	VSPH154	Electricity and Electronics	2	2	-	-
Minor –	VSPH155	Practical based on Electricity and Electronics	2	2 2 2 - 2 2 2 2 2 - 2 2 2 2	-	4
OE	VSPH156	Physics of Human Health	3	3	-	-
UE	V3FH130	Practical based on Physics of Human Health	1	-	2 - 2 - 2 - 2 - 2 - 2 - 3 - 2 - 2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - - - - -	1
AEC		From the Basket	2	2	-	-
VES		From the Basket	2	2	-	-
IKS		NA	-	-	-	-
CC		From the Basket	2	-	-	4
		Total	22	15	00	17

 \mathbf{L} = Lecture hours per week \mathbf{T} = Tutorial hours per week \mathbf{P} = Practical hours per week

- 1 Credit = 15 Hours Lecture
- 1 Credit = 30 Hours Practical

Semester – I

Paper I – Major / Minor Course Code: VSPH100 / VSPH104 Credits: 2

Classical Mechanics and Optics

Course Learning Objective

Upon Completion of the course the student will be able to

LO 1	Understand and explain Newton's Laws of Motion and apply them to solve real- world problems involving friction and pseudo forces.
LO 2	Recall the definitions and relations among elastic constants and illustrate their equivalence using real-life material behavior.
LO 3	Describe and analyze interference phenomena arising from both division of wavefront and amplitude, including applications such as thin films and Newton's rings.
LO 4	Distinguish between Fresnel and Fraunhofer diffraction, and evaluate diffraction patterns from slits and gratings using Huygens-Fresnel theory.

Course	Code	Major / Minor	Credits	Lectures					
VSPH100/V	SPH104	Classical Mechanics and Optics	2	30					
Course Ou	itcomes	s : Upon Completion of the course the student will b	e able to						
CO 1		Newton's laws of motion and analyze problems invo ertial frames, including pseudo forces and friction-l	-						
CO 2	Calculate and relate different elastic constants and interpret their physical significance through experiments and graphical representations.								
CO 3	Demonstrate the concept of interference using experiments like Young's double slit and Newton's rings and deduce physical quantities from observed patterns.								
CO 4	Analyze and compare diffraction patterns from single slit, double slit, and diffraction grating setups, and predict intensity distributions.								
Unit	Conter	nt		No. of Lectures					
	Chapter 1: Newton's Laws of Motion								
	1.1 Newton's first, second and third laws of motion,								
	1.2 Inte	erpretation and applications							
Unit 1	1.3 Pse	eudo forces, Inertial and non-inertial frames of refer	ence.	10					
	1.4 Worked out examples (with friction present)								
	Chapt								
	2.1 Re	eview of Elastic Constants Y, K, η and σ ;							

	2.2 Equivalence of shear strain to compression and extension strains.		
	2.3 Relations between elastic constants		
	Chapter 3: Interference –I (Division of wave front) 3.1 Introduction 3.2 Young's Double Slit Experiment		
U:4 0	Chapter 4: Interference –II (Division of Amplitude) 4.1 Interference in thin films	10	
Unit 2	4.2 Interference in wedge shaped film	10	
	4.3 Fringes in Wedge shaped films		
	4.4 Applications of wedge shaped film		
	4.5 Newton's Rings		
	4.6 Applications of Newton's ring experiment		
	Chapter 5: Introduction to Diffraction		
	5.1 Introduction, Huygens's - Fresnel theory		
	5.2 Distinction between interference and diffraction		
	5.3 Fresnel and Fraunhoffer types of diffraction		
	Chapter 6: Fraunhoffer Diffraction	40	
Unit 3	6.1 Introduction, Fraunhoffer diffraction at a single slit Intensity distribution in diffraction pattern due to a single slit	10	
	6.2 Fraunhoffer diffraction at a double slit,		
	6.3 Distinction between single slit and double slit diffraction pattern and missing orders		
	6.4 Plane diffraction Grating, Theory of plane transmission grating, Width of principal maxima		

Reference Books :

- 1. Halliday, Resnick and Walker, Fundamental of Physics (extended) (6th Ed.), John Wiley and Sons.
- 2. H. C. Verma, Concepts of Physics (Part–I), 2002 Ed. Bharati Bhavan Publishers.
- 3. Brijlal, Subramanyam and Avadhanulu A Textbook of Optics, 25th revised ed.(2012) S. Chand
- 4. Jenkins and White, Fundamentals of Optics by (4th Ed.), McGraw Hill International.

Additional References:

- 1. Thornton and Marion, Classical Dynamics (5th Ed)
- 2. D S Mathur, Element of Properties of Matter, S Chand & Co.
- 3. R Murugeshan and K Shivprasath, Properties of Matter and Acoustics S Chand.
- 4. C L Arora, Optics, S Chand.
- 5. Hans and Puri, Mechanics -, 2nd Ed. Tata McGraw Hill

Practical Course Code: VSPH101 / VSPH105

Credits: 2

Major/Minor Physics Practical

Cor	umaa Cada		Credits	Lectures
	urse Code	Practical based on Classical Mechanics and		
VSPH1	01/VSPH105	Optics	2	60
		Lists of Experiment of GROUP A		
1.	Vernier Calli	pers: Length, Breadth, Thickness, Inner and Outer Diam	eters	
2.	Micrometer	Screw Gauge: Diameter of Wire and Thickness of Sheet/	Slab	
3.	Measuremen	nt of Small Dimensions using Travelling Microscope		
4.	Study of Fly	wheel		
5.	Surface Tens	sion of liquid by Capillary Rise Method		
6.	Determination of Modulus of Rigidity (η) using Flat Spiral Spring (Method of Vibrations)			ethod of
7.	Determinati	on of Young's Modulus by Vibrational Method		
8.	Study of Bar Pendulum			
		Lists of Experiment of GROUP B		
1.	Combination (Arrow Meth	n of Lenses: Equivalent Focal Length of Lens by Mag nod)	gnification	Method
2.	Spectromete	er: Determination of Angle of Prism		
3.	Spectromete	er: Determination of Refractive Index (μ) of Prism Mater	ial	
4.	Study of The	rmistor: Resistance vs Temperature Characteristics		
5.	Newton's Ri	ngs: Determination of Radius of Curvature of Convex Le	ns	
6.	Wedge-Shap	ed Film: Determination of Diameter of Thin Wire or Film	n	
7.	Determinati	on of Focal Length of Lens by u-v Method		
8.	Study of Single-Slit Diffraction Pattern			

Note: Minimum **6 from each group** and **total 12 experiments** along with skills experiment should be completed in the semester I. All experiments are to be reported in a journal. Certified journal is must to be eligible to appear for the semester end practical.

Vocational Skill Course Course Code: VSPH102 Credits: 2

Numerical Techniques in Physics

Course Learning Objective

Upon Completion of the course the student will be able to

LO 1	Understand the principles of various root-finding iterative methods and their
	convergence behavior.
LO 2	Apply interpolation techniques such as Lagrange's method and difference tables to estimate unknown values from discrete data.
LO 3	Analyze and implement curve fitting techniques (linear, polynomial, exponential, trigonometric) for modeling real-world data.
LO 4	Understand and apply numerical integration methods like Simpson's rule and trapezoidal rule, and evaluate the associated errors.

Course Code		VSC –	Credits	Lectures	
VSPH102		Numerical Techniques in Physics	2	30	
Course Ou	itcomes	: Upon Completion of the course the student will be able	e to		
CO 1	Apply and compare different iterative techniques such as Bisection, Newton-Raphson, Secant, and Gauss elimination to solve equations.				
CO 2		erpolation methods and difference tables to estimate int red data and assess the truncation error.	ermediate v	alues from	
CO 3		n curve fitting and regression analysis using computatio mial, exponential, and trigonometric models.	nal tools to	fit	
CO 4	-	nent numerical integration methods and evaluate their a s and algorithms.	ccuracy usii	ng error	
Unit	Conte	nt		No. of Lectures	
	Chapt	er 1: Iterative methods			
	1.1 Be	ginning an iterative method			
	1.2 Th	e method of successive bisection,			
	1.3 Th	e method of false position, Newton-Raphson iterativ	e method		
Unit 1	1.4 Th	e secant method,		10	
	1.5 Th	e method of successive approximations,			
	1.6 Th	e Gauss elimination method			
	1.7 Ap	plications			

Chapter 2: Interpolation	
2.1 Lagrange interpolation	
2.2 Difference tables,	
2.3 Truncation error in interpolation,	10
2.4 Linear regression,	10
2.5 Polynomial regression,	
2.6 Fitting exponential and trigonometric functions	
2.7 Applications	
Chapter 3: Integration	
3.1 Numerical integration,	
3.2 Simpson's rule,	
3.3 Trapezoidal Rule,	10
3.4 Errors in integration formulae,	
3.5 Algorithms for integration of tabulated function,	
3.6 Applications	
	 2.1 Lagrange interpolation 2.2 Difference tables, 2.3 Truncation error in interpolation, 2.4 Linear regression, 2.5 Polynomial regression, 2.6 Fitting exponential and trigonometric functions 2.7 Applications Chapter 3: Integration 3.1 Numerical integration, 3.2 Simpson's rule, 3.3 Trapezoidal Rule, 3.4 Errors in integration formulae, 3.5 Algorithms for integration of tabulated function,

Reference Books :

- 1. Computer Oriented Numerical Methods, by V. Rajaraman (PHI Learning Publications)
- 2. Numerical methods for scientists and engineers, by H. M. Antia (Hindustan Book Agency)
- 3. Computational Physics, by N. J. Giordano and Hisao Nakanishi (Pearson Education India)
- 4. Introductory Methods of Numerical Analysis by S. S. Sastry, 5th ed. (PHI Learning Publications

Vocational Skill Course Course Code: VSPH103

Credits: 2

Microsoft Excel-Based Practical on Numerical Techniques in Physics

	When obott	Excel-Based Practical on Numerical Techniques in P	nysics	
Cou	irse Code	Microsoft Excel-Based Practical on	Credits	Lectures
VS	SPH103	Numerical Techniques in Physics	2	60
	Bisection M	Iethod - Solve the given function using successi	ve bisecti	ons. Plot
1.	convergence	e steps and compare with the theoretical root.		
2.		ion Method (Regula Falsi) - Implement in Exc stopping criteria. Display iterations step-by-step in a	•	an initial
3.		phson Method - Automate root-finding using Excel. Include a convergence plot.	derivativ	e values
4.	Secant Met approximati	hod - Find the root using Excel formula. Displa ons.	y the seq	uence of
5.	Successive step until co	Approximation Method - Use the iterative form <i>x</i> = nvergence.	=g(x). S	how each
6.		Gauss Elimination Method - Solve a system of 2 or 3 linear equations using row operations. Present the augmented matrix and each elimination step.		
7.		terpolation - Input data points and interpolate val inal data points and the interpolated curve.	ues betwe	en them.
8.	-	Linear Regression - Fit a straight-line $y = mx + c$ using built-in Excel functions or formulae. Show slope, intercept, and graph.		
9.	-	Polynomial Regression - Fit a 2nd or 3rd degree polynomial using Excel's LINEST function or chart options. Display the regression equation and curve.		
10.		Fitting Exponential Functions - Fit data of the form $y = a.e^{bx}$ using logarithmic transformations and regression techniques.		
11.		tric Function Fitting - Fit data to a trigonomet $x + c$) using Excel tools or transformations.	ric model	such as
12.	-	Trapezoidal Rule - Integrate a tabulated or defined function over a given interval. Show area approximations visually using Excel charts.		
13.	-	Simpson's 1/3 Rule - Calculate the integral using evenly spaced data points. Highlight differences from the Trapezoidal Rule results.		
14.	-	vsis in Integration - Estimate and interpret numer proximate results. Discuss accuracy and limitations.		between
15.	compute th	for Tabulated Function Integration - Given a tage area under the curve using any suitable methon Excel to highlight function values and integration v	d. Use co	

Note: A **minimum of 12 experiments** must be completed from the VSC paper in Semester I. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Semester – II

Paper I – Major / Minor Course Code: VSPH150 / VSPH154 Credits: 2

Electricity and Electronics

Course Learning Objective

Upon Completion of the course the student will be able to

LO 1	Understand the behavior of R, L, C elements in AC circuits and apply phasor methods				
	to analyze resonance, power, and Q-factor.				
LO 2	Analyze and interpret the working of standard AC bridges and their applications in				
	impedance measurements.				
LO 3	Apply circuit theorems (Thevenin, Norton, Superposition, etc.) to solve complex DC				
	and AC network problems.				
LO 4	Understand the operation of BJTs and logic gates, and develop basic circuit				
	applications including rectifiers, filters, and adders.				

Course Code		Major / Minor	Credits	Lectures	
VSPH150/VSPH154		Electricity and Electronics	2	30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	CO1 Analyze AC circuits with resistive, inductive, and capacitive component phasor representation, and determine conditions for resonance and Q-			U	
CO 2	-	and apply different AC bridges like Maxwell, Wien, g impedance and frequency.	and Hay for		
CO 3		ctrical circuits using various network theorems and power supply circuits using rectifiers and filters.	l design simj	ole	
CO 4	CO 4 Explain the working of BJTs in different configurations and design logic using gates, Boolean expressions, and adder circuits.			circuits	
Unit	Content			No. of Lectures	
	Chapt	er 1: Alternating current theory			
	1.1 AC	circuit containing pure R, pure L and pure C,			
	1.2 Representation of sinusoids by complex numbers,				
	1.3 Se	ries L-R, C-R and LCR circuits.			
	1.4 Re	sonance in LCR circuit (both series and parallel)			
Unit 1	1.5 Po	wer in ac circuit		10	
	1.6 Q-f	actor			
	Chapt	er 2: A. C Bridges			
	2.1 AC	-bridges: General AC bridge			
	2.2 Ma	xwell, De-Sauty			
	2.3 Wi	en Bridge			

2.4 Hay Bridge	
Chapter 3: Circuit Theorem	
3.1 Voltage Divider, Current divider	
3.2 Ideal voltage source and ideal current source	
3.3 Superposition Theorem	
3.4 Thevenin's Theorem	
3.5 Norton's Theorem	
3.6 Reciprocity Theorem	
3.7 Maximum Power Transfer Theorem	
3.8 Numerical related to circuit analysis using the above theorems	10
Chapter 4: DC power supply	
4.1 Half wave rectifier & Full wave rectifier	
4.2 Bridge rectifier	
4.3 Peak inverse voltage and Ripple factor of full wave rectifier	
4.4 Clipper and Clampers (Basic circuits only)	
4.5 Capacitor Filter	
4.6 Zener diode as voltage stabilizer	
Chapter 5: Bipolar Junction Transistors	
5.1 Introduction to BJT: symbols and operation	
5.2 BJT Circuit configurations	
5.3 Current gain of BJT in CB, CE and CC configuration	
5.4 Input and output characteristics in CB, CE configuration	
Chapter 6: Digital Electronics	10
6.1 Logic gates (Review), NAND and NOR as universal building block	10
6.2 EXOR gate: logic expression, logic symbol, truth table	
6.3 Implementation using basic gates and its applications	
6.4 Boolean algebra, Boolean theorems	
6.5 De-Morgan theorems, Half adder and Full adder	
	Chapter 3: Circuit Theorem3.1 Voltage Divider, Current divider3.2 Ideal voltage source and ideal current source3.3 Superposition Theorem3.4 Thevenin's Theorem3.5 Norton's Theorem3.6 Reciprocity Theorem3.7 Maximum Power Transfer Theorem3.8 Numerical related to circuit analysis using the above theoremsChapter 4: DC power supply4.1 Half wave rectifier & Full wave rectifier4.2 Bridge rectifier4.3 Peak inverse voltage and Ripple factor of full wave rectifier4.4 Clipper and Clampers (Basic circuits only)4.5 Capacitor Filter4.6 Zener diode as voltage stabilizerChapter 5: Bipolar Junction Transistors5.1 Introduction to BJT: symbols and operation5.2 BJT Circuit configurations5.3 Current gain of BJT in CB, CE and CC configuration5.4 Input and output characteristics in CB, CE configurationChapter 6: Digital Electronics6.1 Logic gates (Review), NAND and NOR as universal building block6.2 EXOR gate: logic expression, logic symbol, truth table6.3 Implementation using basic gates and its applications6.4 Boolean algebra, Boolean theorems

Reference Books :

- 1. VM: V K Mehta and R Mehta Electronics Principals, Multicoloured Revised 11th Ed. reprint in 2012 ,S Chand.
- 2. CR: D. Chattopadhyay, P C Rakshit , Electricity and Magnetism 7th Ed. New Central Book agency.
- 3. TT :B.L. Theraja and A.K. Theraja , A Textbook of Electrical Technology Vol. I , S. Chand Publication
- 4. BN : Boylestad and Nashelsky, Electronic devices and Circuit Theory: 7th edition, Prentice Hall of India.

Practical Course Code: VSPH151 / VSPH155 Credits: 2 Major / Minor Physics Practical

Course Code VSPH151/VSPH155		Practical based on Electricity and	Credits 2	Lectures 60		
v3FII131/V3FII133		Electronics	2	00		
	Lists of Experiment of GROUP A					
1.	LR Circuit: '	Γο determine the given inductance and phase angle				
2.	CR Circuit:	To determine the given capacitance and phase angle				
3.	AC Mains F	requency: To determine the frequency of AC mains				
4.	LCR Series	Resonance : To determine the resonance frequency of ar	n LCR serie	es circuit		
5.	LCR Paralle	Resonance : To determine the resonance frequency of	an LCR pa	rallel		
6.	Thevenin's	Theorem : To verify Thevenin's theorem for DC circuit				
7.	Norton's Th	eorem: To verify Norton's theorem for DC circuits				
8.	Reciprocity Theorem : To verify the Reciprocity Theorem in electrical networks					
9.	NPN Transi	stor (CE Configuration): To study the input characteris	tics			
10.		stor (CE Configuration): To study the output character				
11.	De Sauty's l bridge	Bridge : To determine unknown capacitance using De Sau	uty's capac	tiance		
		Lists of Experiment of GROUP B				
1.	Zener Diod	e Characteristics: Study of V-I Characteristics				
2.	Zener Diod	e as Voltage Regulator: Study of Regulation Properties				
3.	Bridge Rect	tifier : Study of Load Regulation with and without Filter (Capacitor			
4.	Universal G	ates: Verification of NAND and NOR Gates as Universal F	Building Bl	ocks		
5.	EX-OR Gate	using NAND Gates: Design and Verification				
6.	EX-OR Gate	using NOR Gates: Design and Verification				
7.	De Morgan	De Morgan's Theorems: Verification using Basic Gates				
8.	De Morgan	s Theorems: Verification using Universal Gates				
9.	Half Adder	and Full Adder: Design and Verification				
10.	Half Subtra	ctor and Full Subtractor: Design and Verification				
11.	Boolean Alg	gebra : Verification of Laws and Theorems using NAND/N	NOR Gates			

Note: Minimum **6 from each group** and **total 12 experiments** should be completed in the semester II. All experiments are to be reported in a journal. Certified journal is must to be eligible to appear for the semester end practical.

Skill Enhancement Course Course Code: VSPH152 Credits: 2 Modern Physics

Course Learning Objective

Upon Completion of the course the student will be able to

LO 1	Understand the limitations of classical physics and the origins of modern physics through experiments such as blackbody radiation, photoelectric effect, and Compton scattering.
LO 2	Explore foundational quantum concepts including the de Broglie hypothesis, Davisson–Germer experiment, and the Heisenberg Uncertainty Principle with its implications.
LO 3	Learn and apply fundamental concepts of crystal structures, symmetry, Miller indices, and interplanar spacing in solid-state physics.
LO 4	Understand the principles of X-ray generation, diffraction, and applications, and gain basic conceptual knowledge of radioactivity and its uses in real life.

Course Code		SEC –	Credits	Lectures	
VSPH152		Modern Physics	2	30	
Course Ou	urse Outcomes : Upon Completion of the course the student will be able to				
CO 1	Explain key experimental phenomena such as blackbody radiation, photoelectric effect, and Compton effect, and their role in the development of quantum theory.				
CO 2		quantum concepts like wave-particle duality and un microscopic phenomena and their applications.	ncertainty p	principle to	
CO 3		be and interpret various crystal structures and calcul anar distances for given crystal systems.	late Miller i	ndices and	
CO 4	Analyze the production and applications of X-rays, and demonstrate concepture understanding of radioactivity, nuclear decay, and its practical applications medicine and archaeology.				
Unit	Conte	nt		No. of Lectures	
	Chapte	er 1: Origins of Modern Physics			
	1.1 Bre	eakdown of Classical Physics			
	1.2 Bla	ckbody Radiation and Planck's Hypothesis			
Unit 1	1.3 Ph	otoelectric Effect and Einstein's Equation		10	
	1.4 Co	mpton Effect (qualitative)			
	Chapte	er 2: Foundations of Quantum Theory			
	2.1 de-	Broglie hypothesis			

	2.2 Davisson–Germer Experiment		
	2.3 Heisenberg's Uncertainty Principle (simple statement and examples)		
	2.4 Applications of HUP (Non-Existence of electron in Nucleus)		
	Chapter 3: Structure of solid		
Unit 2	3.1 Crystalline vs. Amorphous Solids	10	
	3.2 Unit Cell, Lattice Types, Unit Cells and lattice parameters, Primitive Cells, Crystal Systems, Crystal Symmetry, Bravais space lattices		
	3.3 Study of S.C, B.C.C & F.C.C Crystal Structure, Diamond Crystal Structure, NaCl Crystal Structure, HCP (Hexagonal Closed Packed) Crystal Structure, Determination of c/a ratio of HCP unit cell		
	3.4 Miller Indices (Plane & Directions)		
	3.5 Interplanar Distance		
	Chapter 4: X-Rays		
	4.1 X-Rays production and properties.		
	4.2 Continuous and characteristic X-Ray spectra,		
	4.3 X-Ray Diffraction,		
	4.4 Bragg's Law		
	4.5 Applications of X-Rays – Industrial & Medical		
Unit 3	4.6 Bragg's Law and Bragg Spectrometer	10	
Unit 5	Chapter 5: Radioactivity	10	
	5.1 Basics of Radioactivity		
	5.2 Types of Radioactive Decay (α , β , γ)		
	5.3 Half-life and Decay Law (concept only)		
	5.4 Mass Defect and Binding Energy (qualitative)		
	5.5 Applications: Carbon Dating, Radiation in Medicine		
Dofor	ence Books :		

Reference Books :

- 1. BSS: N Subrahmanyam, Brijlal and Seshan, Atomic and Nuclear Physics Revised Ed. Reprint 2012, S.Chand
- 2. Arthur Beiser: Perspectives of Modern Physics : Tata McGrawHill
- 3. Introduction to Solid State Physics: S. O. Pillai (New Age International)
- 4. Introduction to Solid State Physics: Babar & Puri (S.Chand Publication)

Skill Enchanment Course Course Code: VSPH153 Credits: 2 Practical Based on Modern Physics

Course Code		Practical based on Modern Physics	Credits	Lectures	
VSPH153		Flattical based on Model in Fligsics	2	60	
1.		To use a breadboard for assembling basic electronic circuits (Transistor as switch, Bridge Rectifier)			
2.	To use a br	To use a breadboard to implement logical circuits (EX-NOR gate)			
3.	To use an oscilloscope for measurement of frequency, voltage, and phase angle				
4.	To determine an unknown frequency or compare two frequencies using Lissajous figures on a CRO				
5.	To study charging and discharging characteristics of a capacitor				
6.	To use a Digital Multimeter (DMM) for basic measurements				
7.	To use a PC for graph plotting and data visualization				
8.	To study clipper and clamper circuits				
9.	To study a thermocouple as a temperature sensor				
10.	To verify Planck's constant using Light Emitting Diodes (LEDs)				
11.	To demonstrate the concept of radioactive half-life using a dice model				
12.	To study the photoelectric effect using a photocell setup				
13.	To determine the wavelength of light using a diffraction grating				
14.	To determ	To determine the wavelength of light using a steel ruler (diffraction method)			
15.	To determ	To determine the groove spacing of a CD/DVD using a LASER			
16.	To perform X-ray Diffraction (XRD) analysis for identifying crystal structures (SC, BCC, FCC) and determining Miller indices form given data.				

Note: A **minimum of 12 experiments** must be completed from the SEC paper in Semester II. All experiments should be recorded **neatly in a certified journal**. Submission of the certified journal is **compulsory to be eligible** for the semester-end practical examination.

Theory / Practical Examination Pattern for (Major / Minor and VSC / SEC)

Internal Assessment – Theory Paper (Total: 40 Marks)

Sr. No.	Component	Nature of Assessment	Marks
1.	CIA-1	Written test conducted in	
	Class Test (Short Answers / MCQs / Objective	class	15
	Questions)		
2.	CIA-2	Individual or group work	
	Assignment / Project / Presentation / Book	submitted as report or	15
	Review / Research Review	presented orally	
3.	CIA-3	Based on engagement,	10
	Participation, Performance & Attendance	attentiveness, regularity	10
Total			40

> External Assessment – Semester End Theory Paper (Total: 60 Marks)

Paper Name				
Duration : 2 Hours Ma		rks : 60		
Q. 1	Questions Based on Unit 1	15		
Q. 2	Questions Based on Unit 2	15		
Q. 3	Questions Based on Unit 3	15		
Q. 4	Questions Based on Unit 1, 2, 3	15		

> External Assessment – Semester End Practical Examination (Total: 100 Marks)

- > Every student must maintain and complete a practical journal as per the prescribed syllabus.
- > The journal must be duly checked and certified by the subject teacher and HOD.
- Students without a completed and certified journal will not be permitted to appear for the practical examination.

Component	Marks
Experiment - I	40
Experiment - II	40
Viva Voce	10
Journal Evaluation	10
Total Marks	100